分类
外匯交易的優點與特點

用不同的指标看看图片


在上面这个例子中可以这样来理解:

anaerobic electricity Solution

When Ryan was sixteen, 用不同的指标看看图片 he decided to start a green power company. He had always been interested in renewable energy, and he believed that there was a lot 用不同的指标看看图片 of potential in the market. With some help from his dad, Ryan set up a small office in their basement and started working on his first prototype.

It took him a few years to perfect his design, but by the time he was twenty-one, his company was starting to take off. Customers were beginning to see the value in using renewable 用不同的指标看看图片 energy, and Ryan’s business was growing rapidly.

Now, ten years later, Ryan’s startup is one of the leading providers of green power technology. They have dozens of patents and several thousand employees. And they’re still growing rapidly.

Aes Chile is now one of the leading providers of green power technology. They 用不同的指标看看图片 have dozens of patents and several thousand employees. And they’re still growing rapidly. Thanks to Ryan’s hard work and innovation, more and more people are using renewable energy, which is helping to reduce our carbon footprint and 用不同的指标看看图片 make the world a cleaner, healthier place.

02 数据指标中心应该如何设计

图片.jpg

图片.jpg


在上面这个例子中可以这样来理解:

用不同的指标看看图片

图片3

四、用户画像分析

图片4

1、人口属性的特征:姓名、性别、年龄、身高、体重、职业、地域、受教育程度、婚姻、星座、血型等。

2、用户兴趣则包括用户个人兴趣和用户商业兴趣。用户个人兴趣指的是个人的生活兴趣爱好,比如喜欢宠物、看电影、听流行音乐等;用户商业兴趣指的是对购物、房产、汽车、金融等消费领域的兴趣分析。

3、用户行为分析:包括APP内行为与社交网络行为。APP内行为指在APP使用过程中,如购物APP,搜索、浏览、评论、点赞、收藏、打分、加入购物车、购买、领取优惠券等行为。

无排序的度量指标

Fork me on GitHub

接下来,决策支持指标包括精度、召回率F1得分。这些重点是衡量推荐人如何帮助用户做出好的决定。它们帮助用户选择“好的”物品,并避免“坏的”物品。这些类型的度量开始强调对推荐系统来说什么是重要的。如果我们向用户推荐100个物品,最重要的是前5个、10个或20个位置的物品。精确度是选出来的物品中与用户相关的物品的百分比。它的重点是推荐最有用的东西。召回率是推荐系统选择出来的相关物品占所有相关物品的百分比。它的重点是不缺少有用的东西。F1得分是两者的结合。F1调和平均值是一种平衡精度和召回率的方法,得到一个单一的度量。

对于我们的排序任务,这些度量有一个主要的缺点。这些决策支持度量覆盖了整个数据集。它们不是针对“最顶端”的推荐。precision和recall都是关于整个结果集的。为了扩展这些度量,precision和recall通常都有一个上限n。它的形式是[email protected]:[email protected][email protected]:[email protected]。有趣的是,我找不到一个好的来源来描述代表[email protected][email protected]的调和平均数的[email protected]得分。我们继续吧。

有排序意义的度量指标

MRR: Mean Reciprocal Rank

MAP: Mean Average Precision

NDCG: Normalized Discounted Cumulative Gain

上述3个度量标准来自于两个度量家族。第一种度量包括基于二进制相关性的度量。这些度量标准关心的是一个物品在二进制意义上是否是好的。第二个系列包含基于应用的度量。它们通过度量绝对或相对的好来扩展好/坏的感觉。让我们在下一节中描述每个度量的特点。

MRR: Mean Reciprocal Rank

  • 本文地址:MRR vs MAP vs NDCG:具有排序意义的度量指标的可视化解释及使用场景分析
  • 本文版权归作者和AIQ共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出

MRR的优点

  • 该方法计算简单,解释简单。
  • 这种方法高度关注列表的第一个相关元素。它最适合有针对性的搜索,比如用户询问“对我来说最好的东西”。
  • 适用于已知项目搜索,如导航查询或寻找事实。

MRR的缺点

  • MRR指标不评估推荐项目列表的其余部分。它只关注列表中的第一个项目。
  • 它给出一个只有一个相关物品的列表。如果这是评估的目标,那找个度量指标是可以的。
  • 对于想要浏览相关物品列表的用户来说,这可能不是一个好的评估指标。用户的目标可能是比较多个相关物品。

MAP: Average Precision and Mean Average Precision

接下来是MAP度量。假设我们有一个二进制相关性数据集。我们想要评估整个推荐项目列表,直到一个特定的截止值n。这个截止值之前使用[email protected]度量。决策支持度指标计算n个推荐中好的推荐的比例。此指标的缺点是,它不认为推荐列表是一个有序列表[email protected]将整个列表视为一组条目,并平等对待推荐列表中的所有错误。

通过PR曲线下的面积进行MAP的度量
为了比较两种系统,我们需要PR曲线下尽可能大的区域。在上面的例子中,我们比较了系统A, B和C。我们注意到系统A比系统C在所有级别的召回上都要好。但是,A系统和B系统相交的地方是B系统在较高的召回水平上表现更好。这个场景的问题是很难确定哪个系统总体上做得更好。绘图比单一的指标更难解释。这就是为什么研究人员提出了一个单一的度量来近似平均精确度(即精确度 —— 召回率曲线下的面积)。

MAP优点

  • 给出了一个代表精确度 — 召回率曲线下复杂区域的单一度量。这提供了每个列表的平均精度。
  • 处理列表推荐物品的自然排序。这与将检索项视为集合的度量标准形成了对比。
  • 这一指标能够给予发生在排序高的推荐名单中的错误更多的权重。相反,它对发生在推荐列表中较深位置的错误的权重较小。这符合在推荐列表的最前面显示尽可能多的相关条目的需要。

MAP缺点

  • 这个度量标准适用于二进制(相关/非相关)评级。然而,它不适合细粒度的数字评级。此度量无法从此信息中提取误差度量。
  • 对于细粒度的评分,例如从1星到5星的评分,评估首先需要对评分进行阈值,以产生二元相关性。一种选择是只考虑大于4的评级。由于人工阈值的存在,这在评估度量中引入了偏差。此外,我们正在丢弃那些精细的信息。这个信息是在4星和5星之间的差异评级,以及在不相关的项目的信息。1星评级真的和3星评级一样吗?

Normalized Discounted Cumulative Gain

在NDCG之前我们有cumulative gain CG。这是一种基本的方法来积累等级相关度。这个度量不考虑元素在排序列表中的位置。对于排序任务,我们需要增加排序列表中元素位置的相对影响。standard Discounted Cumulative Gain(DCG)增加了一个对数衰减因子,以按比例惩罚项目的位置相关分数。此外,在工业应用中,为了强调检索相关文档,相关性分数得到提升是很常见的。这出现在industry DCG公式中。

我们在处理动态系统。用户将得到数量可变的相关项目推荐。这使得DCG测量在用户之间没有可比性。我们需要标准化度量,使它在0和1之间。为此,我们确定用户的理想排名。然后用该排序作为Ideal Discounted Cumulative Gain IDCG。这提供了一个很好的归一化因子。它有助于计算 Normalized Discounted Cumulative Gain。因为这是一个针对每个用户的度量,所以我们需要为测试集中的所有用户计算这个度量。然后,这个平均值用于比较recsys系统之间的差异。为了可视化这个过程,我们在下面的图中计算单个用户的预测和理想排名。